Metabolomic Differences Between Black and White Men with Metastatic Prostate Cancer

Presenter: Zhongyi (James) Guo

Email: zhongyi.guo@stanford.edu

"Prostate cancer has the **largest** racial disparities of any cancer in the United States." [1]

Incidence Rate

Per 100,000 persons (2017–2021, Age-Adjusted)

National Cancer Institute (https://seer.cancer.gov/statfacts/html/prost.html)

Death Rate

Per 100,000 persons (2017–2021, Age-Adjusted)

National Cancer Institute (https://seer.cancer.gov/statfacts/html/prost.html)

Previous Evidence

- Among Black men
 - Upregulated lipid metabolism in prostatectomy specimens [2]
 - Acyl carnitines and sphingolipid enrichment in prostatic fluid [3]
- Few studies used blood samples
 - White-dominant populations [4-7] || prostate cancer vs. prostate cancer-free [8]
 - None on Black–White differences

Aim

Introduce a pilot study that bridges the gap

Research Question

What is the difference in blood-based metabolomic profiles between Black and White men with metastatic hormone-sensitive prostate cancer (mHSPC) in the United States?

PICO

- P: 34 men (17 Black, 17 White) with mHSPC enrolled from the International Registry for Men with Advanced Prostate Cancer
- I: Black Race
- C: White Race
- O: Metabolomic profile from blood plasma

"Table 1"

	Overall $(n = 34)$	Black ($n = 17$)	White $(n = 17)$
Age at Enrollment (n, %)			
50 – 59 years	8 (23.4)	5 (29.4)	3 (17.6)
60 – 69 years	16 (47.1)	7 (41.2)	9 (52.9)
70 – 79 years	10 (29.4)	5 (29.4)	5 (29.4)
Body Mass Index (n, %)			
$< 25 \text{ kg/m}^2$	9 (26.5)	4 (23.5)	5 (29.4)
$25 - < 30 \text{ kg/m}^2$	11 (32.4)	4 (23.5)	7 (41.2)
$\geq 30 \text{ kg/m}^2$	12 (35.2)	7 (41.2)	5 (29.4)
Not Available	2 (5.8)	2 (11.8)	0

Two Panels (Part I)

- 1. Global Discovery Panel (HD4)
- Quantified various classes of metabolites
- Total after quality control: 886 metabolites

Two Panels (Part 2)

2. Complex Lipidomics Panel (CLP)

- Quantified lipids only
- Total after quality control: 832 lipids

Statistical Analyses

- Welch's t-test
- Principal Component Analysis (PCA)
- Partial Least Square-Discriminant Analysis (PLS-DA)
- Random Forest

All analyses were performed in Jupyter Notebook with an R kernel (version 4.3.1); Some visualizations were enhanced using Photoshop.

Motivation

Look for metabolites consistently found across all analyses

Welch's T-Test

Motivation

• Compare mean metabolite concentrations (Black vs White)

Multiple hypothesis testing

- Performing ~1,700 t-tests can inflate false positive (Type I error)
- Used false discovery rate adjusted q-values
- Statistical significance: q < 0.1

T-Test Results

PCA

- Motivation
 - reduce high-dimensional metabolite data into a few principal components (PC) to capture the major patterns of variation

Top 15 Compounds with Highest Loading

- Loading: weight of a metabolite's contribution to PC1
- HD4: Serotonin and N-acetyl-cadaverine from t-test again
- CLP: Phosphatidylethanolamine (PE)

PLS-DA

- Motivation
 - a supervised dimensionality reduction method
 - maximizes the separation between Black and White individuals

- Variable Importance in Projection
- Quantifies a metabolite's importance in the model's ability to distinguish between groups

- HD4: Serotonin and N-acetyl-cadaverine again! 3hydroxystachydrine highest
- CLP: Triacylglycerol (TAG) class

Random Forest (RF)

- Motivation
 - a machine learning classifier

MDA Scores

- Mean Decrease Accuracy
- Measures how much the model's accuracy drops when we permute the values of that metabolite across all samples

• HD4

- N-acetyl-cadaverine (from t-test and PLS-DA) and N-acetylcitrulline (from t-test) again
- 3-hydroxystachydrine (from PLS-DA) again
- Acyl carnitine derivatives and glutamine derivatives were also found

CLP

- CLP
 - TAG again

а

b

Conclusion

- HD4: Serotonin, N-acetylcitrulline, and N-acetyl-cadaverine were consistently found across multiple analyses
- CLP: TAGs were found across multiple analyses
- Ontological perspectives
 - Serotonin: synapse
 - N-acetylcitrulline: arginine synthesis
 - N-acetyl-cadaverine: brain GABA (inhibitory neurotransmitter) synthesis
 - TAGs: related to PE conversion (cell membrane)

Limitations

- Limited statistical power
 - Small sample size (n = 50)

Thank you all!

- Especially
 - Professor Rebecca Graff at UCSF
 - Professor John Witte at Stanford
 - And also my Chinese "family" :3

References

[1] Gulati et al., Racial disparities in prostate cancer mortality: a model-based decomposition of contributing factors, *JNCI Monographs*, Volume 2023, Issue 62, November 2023, Pages 212–218. doi: 10.1093/jncimonographs/lgad018

[2] Berchuck et al. The Prostate Cancer Androgen Receptor Cistrome in African American Men Associates with Upregulation of Lipid Metabolism and Immune Response. *Cancer Res.* 2022;82(16):2848-2859. doi:10.1158/0008-5472.CAN-21-3552

[3] Trock et al. Mp45-11 metabolomics of black-white differences in risk of prostate cancer biochemical recurrence. *J Urol*. 2022;207(Supplement 5):e766. doi:10.1097/JU.000000000002611.11

[4] Zheng et al. Distinct Metabolic Signatures of Hormone-Sensitive and Castration-Resistant Prostate Cancer Revealed by a1 H NMR-Based Metabolomics of Biopsy Tissue. *J Proteome Res*. 2020;19(9):3741-3749. doi:10.1021/acs.jproteome.0c00282

[5] Lin et al. A distinct plasma lipid signature associated with poor prognosis in castration-resistant prostate cancer. *Int J Cancer*. 2017;141(10):2112-2120. doi:10.1002/ijc.30903

[6] Lin et al. Aberrations in circulating ceramide levels are associated with poor clinical outcomes across localised and metastatic prostate cancer. *Prostate Cancer Prostatic Dis*. 2021;24(3):860-870. doi:10.1038/s41391-021-00338-z

[7] Lin et al. Overcoming enzalutamide resistance in metastatic prostate cancer by targeting sphingosine kinase. *eBioMedicine*. 2021;72:103625. doi:10.1016/j.ebiom.2021.103625

[8] Lin et al. Relationship between Circulating Lipids and Cytokines in Metastatic Castration-Resistant Prostate Cancer. *Cancers*. 2021;13(19):4964. doi:10.3390/cancers13194964

[9] Mak et al. Combined impact of lipidomic and genetic aberrations on clinical outcomes in metastatic castration-resistant prostate cancer. *BMC Med*. 2022;20(1):112. doi:10.1186/s12916-022-02298-0

[10] Mak et al. Modulation of Plasma Lipidomic Profiles in Metastatic Castration-Resistant Prostate Cancer by Simvastatin. *Cancers*. 2022;14(19):4792. doi:10.3390/cancers14194792

[11] Scheinberg et al. PCPro: a clinically accessible, circulating lipid biomarker signature for poor-prognosis metastatic prostate cancer. *Prostate Cancer Prostatic Dis*. 2024;27(1):136-143. doi:10.1038/s41391-023-00666-2